Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty driven probabilistic voxel selection for image registration (2010.00988v1)

Published 2 Oct 2020 in cs.CV

Abstract: This paper presents a novel probabilistic voxel selection strategy for medical image registration in time-sensitive contexts, where the goal is aggressive voxel sampling (e.g. using less than 1% of the total number) while maintaining registration accuracy and low failure rate. We develop a Bayesian framework whereby, first, a voxel sampling probability field (VSPF) is built based on the uncertainty on the transformation parameters. We then describe a practical, multi-scale registration algorithm, where, at each optimization iteration, different voxel subsets are sampled based on the VSPF. The approach maximizes accuracy without committing to a particular fixed subset of voxels. The probabilistic sampling scheme developed is shown to manage the tradeoff between the robustness of traditional random voxel selection (by permitting more exploration) and the accuracy of fixed voxel selection (by permitting a greater proportion of informative voxels).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Boris N. Oreshkin (27 papers)
  2. Tal Arbel (41 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.