Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A straightforward line search approach on the expected empirical loss for stochastic deep learning problems (2010.00921v1)

Published 2 Oct 2020 in cs.LG and stat.ML

Abstract: A fundamental challenge in deep learning is that the optimal step sizes for update steps of stochastic gradient descent are unknown. In traditional optimization, line searches are used to determine good step sizes, however, in deep learning, it is too costly to search for good step sizes on the expected empirical loss due to noisy losses. This empirical work shows that it is possible to approximate the expected empirical loss on vertical cross sections for common deep learning tasks considerably cheaply. This is achieved by applying traditional one-dimensional function fitting to measured noisy losses of such cross sections. The step to a minimum of the resulting approximation is then used as step size for the optimization. This approach leads to a robust and straightforward optimization method which performs well across datasets and architectures without the need of hyperparameter tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maximus Mutschler (4 papers)
  2. Andreas Zell (59 papers)

Summary

We haven't generated a summary for this paper yet.