Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Weight and Gradient Centralization in Deep Neural Networks (2010.00866v3)

Published 2 Oct 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Batch normalization is currently the most widely used variant of internal normalization for deep neural networks. Additional work has shown that the normalization of weights and additional conditioning as well as the normalization of gradients further improve the generalization. In this work, we combine several of these methods and thereby increase the generalization of the networks. The advantage of the newer methods compared to the batch normalization is not only increased generalization, but also that these methods only have to be applied during training and, therefore, do not influence the running time during use. Link to CUDA code https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube