Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modifying the Symbolic Aggregate Approximation Method to Capture Segment Trend Information (2010.00730v1)

Published 2 Oct 2020 in cs.LG

Abstract: The Symbolic Aggregate approXimation (SAX) is a very popular symbolic dimensionality reduction technique of time series data, as it has several advantages over other dimensionality reduction techniques. One of its major advantages is its efficiency, as it uses precomputed distances. The other main advantage is that in SAX the distance measure defined on the reduced space lower bounds the distance measure defined on the original space. This enables SAX to return exact results in query-by-content tasks. Yet SAX has an inherent drawback, which is its inability to capture segment trend information. Several researchers have attempted to enhance SAX by proposing modifications to include trend information. However, this comes at the expense of giving up on one or more of the advantages of SAX. In this paper we investigate three modifications of SAX to add trend capturing ability to it. These modifications retain the same features of SAX in terms of simplicity, efficiency, as well as the exact results it returns. They are simple procedures based on a different segmentation of the time series than that used in classic-SAX. We test the performance of these three modifications on 45 time series datasets of different sizes, dimensions, and nature, on a classification task and we compare it to that of classic-SAX. The results we obtained show that one of these modifications manages to outperform classic-SAX and that another one slightly gives better results than classic-SAX.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (6)

Summary

We haven't generated a summary for this paper yet.