Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cardea: An Open Automated Machine Learning Framework for Electronic Health Records (2010.00509v1)

Published 1 Oct 2020 in cs.LG and stat.ML

Abstract: An estimated 180 papers focusing on deep learning and EHR were published between 2010 and 2018. Despite the common workflow structure appearing in these publications, no trusted and verified software framework exists, forcing researchers to arduously repeat previous work. In this paper, we propose Cardea, an extensible open-source automated machine learning framework encapsulating common prediction problems in the health domain and allows users to build predictive models with their own data. This system relies on two components: Fast Healthcare Interoperability Resources (FHIR) -- a standardized data structure for electronic health systems -- and several AUTOML frameworks for automated feature engineering, model selection, and tuning. We augment these components with an adaptive data assembler and comprehensive data- and model- auditing capabilities. We demonstrate our framework via 5 prediction tasks on MIMIC-III and Kaggle datasets, which highlight Cardea's human competitiveness, flexibility in problem definition, extensive feature generation capability, adaptable automatic data assembler, and its usability.

Citations (9)

Summary

We haven't generated a summary for this paper yet.