Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-3DAligner: Unsupervised 3D Point Set Registration Network With Optimizable Latent Vector (2010.00321v1)

Published 29 Sep 2020 in cs.CV

Abstract: Point cloud registration is the process of aligning a pair of point sets via searching for a geometric transformation. Unlike classical optimization-based methods, recent learning-based methods leverage the power of deep learning for registering a pair of point sets. In this paper, we propose to develop a novel model that organically integrates the optimization to learning, aiming to address the technical challenges in 3D registration. More specifically, in addition to the deep transformation decoding network, our framework introduce an optimizable deep \underline{S}patial \underline{C}orrelation \underline{R}epresentation (SCR) feature. The SCR feature and weights of the transformation decoder network are jointly updated towards the minimization of an unsupervised alignment loss. We further propose an adaptive Chamfer loss for aligning partial shapes. To verify the performance of our proposed method, we conducted extensive experiments on the ModelNet40 dataset. The results demonstrate that our method achieves significantly better performance than the previous state-of-the-art approaches in the full/partial point set registration task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lingjing Wang (16 papers)
  2. Xiang Li (1003 papers)
  3. Yi Fang (151 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.