Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators (2009.14381v2)

Published 30 Sep 2020 in cs.AR and cs.PL

Abstract: Adopting FPGA as an accelerator in datacenters is becoming mainstream for customized computing, but the fact that FPGAs are hard to program creates a steep learning curve for software programmers. Even with the help of high-level synthesis (HLS), accelerator designers still have to manually perform code reconstruction and cumbersome parameter tuning to achieve the optimal performance. While many learning models have been leveraged by existing work to automate the design of efficient accelerators, the unpredictability of modern HLS tools becomes a major obstacle for them to maintain high accuracy. To address this problem, we propose an automated DSE framework-AutoDSE- that leverages a bottleneck-guided coordinate optimizer to systematically find a better design point. AutoDSE detects the bottleneck of the design in each step and focuses on high-impact parameters to overcome it. The experimental results show that AutoDSE is able to identify the design point that achieves, on the geometric mean, 19.9x speedup over one CPU core for Machsuite and Rodinia benchmarks. Compared to the manually optimized HLS vision kernels in Xilinx Vitis libraries, AutoDSE can reduce their optimization pragmas by 26.38x while achieving similar performance. With less than one optimization pragma per design on average, we are making progress towards democratizing customizable computing by enabling software programmers to design efficient FPGA accelerators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Atefeh Sohrabizadeh (11 papers)
  2. Cody Hao Yu (13 papers)
  3. Min Gao (81 papers)
  4. Jason Cong (62 papers)
Citations (66)

Summary

We haven't generated a summary for this paper yet.