Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Group Whitening: Balancing Learning Efficiency and Representational Capacity (2009.13333v4)

Published 28 Sep 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Batch normalization (BN) is an important technique commonly incorporated into deep learning models to perform standardization within mini-batches. The merits of BN in improving a model's learning efficiency can be further amplified by applying whitening, while its drawbacks in estimating population statistics for inference can be avoided through group normalization (GN). This paper proposes group whitening (GW), which exploits the advantages of the whitening operation and avoids the disadvantages of normalization within mini-batches. In addition, we analyze the constraints imposed on features by normalization, and show how the batch size (group number) affects the performance of batch (group) normalized networks, from the perspective of model's representational capacity. This analysis provides theoretical guidance for applying GW in practice. Finally, we apply the proposed GW to ResNet and ResNeXt architectures and conduct experiments on the ImageNet and COCO benchmarks. Results show that GW consistently improves the performance of different architectures, with absolute gains of $1.02\%$ $\sim$ $1.49\%$ in top-1 accuracy on ImageNet and $1.82\%$ $\sim$ $3.21\%$ in bounding box AP on COCO.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lei Huang (175 papers)
  2. Yi Zhou (438 papers)
  3. Li Liu (311 papers)
  4. Fan Zhu (44 papers)
  5. Ling Shao (244 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.