Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extension of Gyarfas-Sumner conjecture to digraphs (2009.13319v1)

Published 28 Sep 2020 in math.CO and cs.DM

Abstract: The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has been a recent center of study. In this work we look at possible extensions of Gy\'arf\'as-Sumner conjecture. More precisely, we propose as a conjecture a simple characterization of finite sets $\mathcal F$ of digraphs such that every oriented graph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induce subdigraph. Among notable results, we prove that oriented triangle-free graphs without a directed path of length $3$ are $2$-colorable. If condition of "triangle-free" is replaced with "$K_4$-free", then we have an upper bound of $414$. We also show that an orientation of complete multipartite graph with no directed triangle is 2-colorable. To prove these results we introduce the notion of \emph{nice sets} that might be of independent interest.

Citations (17)

Summary

We haven't generated a summary for this paper yet.