Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity of proper holomorphic maps between type-$\mathrm{I}$ irreducible bounded symmetric domains (2009.12803v2)

Published 27 Sep 2020 in math.CV and math.DG

Abstract: We study proper holomorphic maps between type-$\mathrm{I}$ irreducible bounded symmetric domains. In particular, we obtain rigidity results for such maps under certain assumptions. More precisely, let $f:D{\mathrm{I}}_{p,q}\to D{\mathrm{I}}_{p',q'}$ be a proper holomorphic map, where $p\ge q\ge 2$ and $q'<\min{2q-1,p}$. Then, we show that $p'\ge p$ and $q'\ge q$. Moreover, we prove that there exist automorphisms $\psi$ and $\Phi$ of $D{\mathrm{I}}_{p,q}$ and $D{\mathrm{I}}_{p',q'}$ respectively, such that $f=\Phi\circ G_h\circ \psi$ for some map $G_h:D{\mathrm{I}}_{p,q}\to D{\mathrm{I}}_{p',q'}$ defined by [ G_h(Z):= \begin{bmatrix} Z & {\bf 0}\ {\bf 0} & h(Z) \end{bmatrix}\quad \forall\; Z\in D{\mathrm{I}}_{p,q},] where $h:D{\mathrm{I}}_{p,q}\to D{\mathrm{I}}_{p'-p,q'-q}$ is a holomorphic map.

Summary

We haven't generated a summary for this paper yet.