Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Debiasing NLU Models from Unknown Biases (2009.12303v4)

Published 25 Sep 2020 in cs.CL, cs.AI, and cs.LG

Abstract: NLU models often exploit biases to achieve high dataset-specific performance without properly learning the intended task. Recently proposed debiasing methods are shown to be effective in mitigating this tendency. However, these methods rely on a major assumption that the types of bias should be known a-priori, which limits their application to many NLU tasks and datasets. In this work, we present the first step to bridge this gap by introducing a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance. The proposed framework is general and complementary to the existing debiasing methods. We show that it allows these existing methods to retain the improvement on the challenge datasets (i.e., sets of examples designed to expose models' reliance on biases) without specifically targeting certain biases. Furthermore, the evaluation suggests that applying the framework results in improved overall robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Prasetya Ajie Utama (6 papers)
  2. Nafise Sadat Moosavi (38 papers)
  3. Iryna Gurevych (264 papers)
Citations (141)