Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L_2$-norm sampling discretization and recovery of functions from RKHS with finite trace (2009.11940v2)

Published 24 Sep 2020 in math.NA and cs.NA

Abstract: In this paper we study $L_2$-norm sampling discretization and sampling recovery of complex-valued functions in RKHS on $D \subset \Rd$ based on random function samples. We only assume the finite trace of the kernel (Hilbert-Schmidt embedding into $L_2$) and provide several concrete estimates with precise constants for the corresponding worst-case errors. In general, our analysis does not need any additional assumptions and also includes the case of non-Mercer kernels and also non-separable RKHS. The fail probability is controlled and decays polynomially in $n$, the number of samples. Under the mild additional assumption of separability we observe improved rates of convergence related to the decay of the singular values. Our main tool is a spectral norm concentration inequality for infinite complex random matrices with independent rows complementing earlier results by Rudelson, Mendelson, Pajor, Oliveira and Rauhut.

Summary

We haven't generated a summary for this paper yet.