Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An endpoint estimate for the commutators of singular integral operators with rough kernels (2009.11650v4)

Published 24 Sep 2020 in math.CA

Abstract: Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}{d-1}$, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|d}$ and $T_{\Omega,\,b}$ be the commutator of $T_{\Omega}$ with symbol $b$. In this paper, we prove that if $\Omega\in L(\log L)2(S{d-1})$, then for $b\in {\rm BMO}(\mathbb{R}d)$, $T_{\Omega,\,b}$ satisfies an endpoint estimate of $L\log L$ type.

Summary

We haven't generated a summary for this paper yet.