Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Algorithms for Delivery Time Prediction in Transportation Logistics (2009.11598v2)

Published 24 Sep 2020 in cs.LG and stat.ML

Abstract: Travel time is a crucial measure in transportation. Accurate travel time prediction is also fundamental for operation and advanced information systems. A variety of solutions exist for short-term travel time predictions such as solutions that utilize real-time GPS data and optimization methods to track the path of a vehicle. However, reliable long-term predictions remain challenging. We show in this paper the applicability and usefulness of travel time i.e. delivery time prediction for postal services. We investigate several methods such as linear regression models and tree based ensembles such as random forest, bagging, and boosting, that allow to predict delivery time by conducting extensive experiments and considering many usability scenarios. Results reveal that travel time prediction can help mitigate high delays in postal services. We show that some boosting algorithms, such as light gradient boosting and catboost, have a higher performance in terms of accuracy and runtime efficiency than other baselines such as linear regression models, bagging regressor and random forest.

Citations (13)

Summary

We haven't generated a summary for this paper yet.