Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element analysis for a diffusion equation on a harmonically evolving domain (2009.11105v1)

Published 23 Sep 2020 in math.NA and cs.NA

Abstract: We study convergence of the evolving finite element semi-discretization of a parabolic partial differential equation on an evolving bulk domain. The boundary of the domain evolves with a given velocity, which is then extended to the bulk by solving a Poisson equation. The numerical solution to the parabolic equation depends on the numerical evolution of the bulk, which yields the time-dependent mesh for the finite element method. The stability analysis works with the matrix-vector formulation of the semi-discretization only and does not require geometric arguments, which are then required in the proof of consistency estimates. We present various numerical experiments that illustrate the proven convergence rates.

Citations (7)

Summary

We haven't generated a summary for this paper yet.