Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the proliferation of support vectors in high dimensions (2009.10670v2)

Published 22 Sep 2020 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: The support vector machine (SVM) is a well-established classification method whose name refers to the particular training examples, called support vectors, that determine the maximum margin separating hyperplane. The SVM classifier is known to enjoy good generalization properties when the number of support vectors is small compared to the number of training examples. However, recent research has shown that in sufficiently high-dimensional linear classification problems, the SVM can generalize well despite a proliferation of support vectors where all training examples are support vectors. In this paper, we identify new deterministic equivalences for this phenomenon of support vector proliferation, and use them to (1) substantially broaden the conditions under which the phenomenon occurs in high-dimensional settings, and (2) prove a nearly matching converse result.

Citations (38)

Summary

We haven't generated a summary for this paper yet.