Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Continuous Frames in Time-Frequency Analysis (2009.10525v2)

Published 20 Sep 2020 in math.NA, cs.IT, cs.NA, and math.IT

Abstract: Recently, a Monte Carlo approach was proposed for processing highly redundant continuous frames. In this paper we present and analyze applications of this new theory. The computational complexity of the Monte Carlo method relies on the continuous frame being so called linear volume discretizable (LVD). The LVD property means that the number of samples in the coefficient space required by the Monte Carlo method is proportional to the resolution of the discrete signal. We show in this paper that the continuous wavelet transform (CWT) and the localizing time-frequency transform (LTFT) are LVD. The LTFT is a time-frequency representation based on a 3D time-frequency space with a richer class of time-frequency atoms than classical time-frequency transforms like the short time Fourier transform (STFT) and the CWT. Our analysis proves that performing signal processing with the LTFT has the same asymptotic complexity as signal processing with the STFT and CWT (based on FFT), even though the coefficient space of the LTFT is higher dimensional.

Citations (3)

Summary

We haven't generated a summary for this paper yet.