Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-based Surprise Minimization for Multi-Agent Value Factorization (2009.09842v4)

Published 16 Sep 2020 in cs.LG, cs.MA, and stat.ML

Abstract: Multi-Agent Reinforcement Learning (MARL) has demonstrated significant success in training decentralised policies in a centralised manner by making use of value factorization methods. However, addressing surprise across spurious states and approximation bias remain open problems for multi-agent settings. Towards this goal, we introduce the Energy-based MIXer (EMIX), an algorithm which minimizes surprise utilizing the energy across agents. Our contributions are threefold; (1) EMIX introduces a novel surprise minimization technique across multiple agents in the case of multi-agent partially-observable settings. (2) EMIX highlights a practical use of energy functions in MARL with theoretical guarantees and experiment validations of the energy operator. Lastly, (3) EMIX extends Maxmin Q-learning for addressing overestimation bias across agents in MARL. In a study of challenging StarCraft II micromanagement scenarios, EMIX demonstrates consistent stable performance for multiagent surprise minimization. Moreover, our ablation study highlights the necessity of the energy-based scheme and the need for elimination of overestimation bias in MARL. Our implementation of EMIX can be found at karush17.github.io/emix-web/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Karush Suri (12 papers)
  2. Xiao Qi Shi (5 papers)
  3. Konstantinos Plataniotis (16 papers)
  4. Yuri Lawryshyn (12 papers)
Citations (1)