Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exploring the Linear Subspace Hypothesis in Gender Bias Mitigation

Published 20 Sep 2020 in cs.LG, cs.CL, and cs.CY | (2009.09435v4)

Abstract: Bolukbasi et al. (2016) presents one of the first gender bias mitigation techniques for word representations. Their method takes pre-trained word representations as input and attempts to isolate a linear subspace that captures most of the gender bias in the representations. As judged by an analogical evaluation task, their method virtually eliminates gender bias in the representations. However, an implicit and untested assumption of their method is that the bias subspace is actually linear. In this work, we generalize their method to a kernelized, nonlinear version. We take inspiration from kernel principal component analysis and derive a nonlinear bias isolation technique. We discuss and overcome some of the practical drawbacks of our method for non-linear gender bias mitigation in word representations and analyze empirically whether the bias subspace is actually linear. Our analysis shows that gender bias is in fact well captured by a linear subspace, justifying the assumption of Bolukbasi et al. (2016).

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.