Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counteracting Inequality in Markets via Convex Pricing (2009.09351v1)

Published 20 Sep 2020 in cs.GT

Abstract: We study market mechanisms for allocating divisible goods to competing agents with quasilinear utilities. For \emph{linear} pricing (i.e., the cost of a good is proportional to the quantity purchased), the First Welfare Theorem states that Walrasian equilibria maximize the sum of agent valuations. This ensures efficiency, but can lead to extreme inequality across individuals. Many real-world markets -- especially for water -- use \emph{convex} pricing instead, often known as increasing block tariffs (IBTs). IBTs are thought to promote equality, but there is a dearth of theoretical support for this claim. In this paper, we study a simple convex pricing rule and show that the resulting equilibria are guaranteed to maximize a CES welfare function. Furthermore, a parameter of the pricing rule directly determines which CES welfare function is implemented; by tweaking this parameter, the social planner can precisely control the tradeoff between equality and efficiency. Our result holds for any valuations that are homogeneous, differentiable, and concave. We also give an iterative algorithm for computing these pricing rules, derive a truthful mechanism for the case of a single good, and discuss Sybil attacks.

Summary

We haven't generated a summary for this paper yet.