Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Subspace Newton Convex Method Applied to Data-Driven Sensor Selection Problem (2009.09315v2)

Published 19 Sep 2020 in eess.SY and cs.SY

Abstract: The randomized subspace Newton convex methods for the sensor selection problem are proposed. The randomized subspace Newton algorithm is straightforwardly applied to the convex formulation, and the customized method in which the part of the update variables are selected to be the present best sensor candidates is also considered. In the converged solution, almost the same results are obtained by original and randomized-subspace-Newton convex methods. As expected, the randomized-subspace-Newton methods require more computational steps while they reduce the total amount of the computational time because the computational time for one step is significantly reduced by the cubic of the ratio of numbers of randomly updating variables to all the variables. The customized method shows superior performance to the straightforward implementation in terms of the quality of sensors and the computational time.

Citations (24)

Summary

We haven't generated a summary for this paper yet.