Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Generalized distance to a simplex and a new geometrical method for portfolio optimization (2009.08826v1)

Published 18 Sep 2020 in q-fin.PM

Abstract: Risk aversion plays a significant and central role in investors' decisions in the process of developing a portfolio. In this framework of portfolio optimization we determine the portfolio that possesses the minimal risk by using a new geometrical method. For this purpose, we elaborate an algorithm that enables us to compute any generalized Euclidean distance to a standard simplex. With this new approach, we are able to treat the case of portfolio optimization without short-selling in its entirety, and we also recover in geometrical terms the well-known results on portfolio optimization with allowed short-selling. Then, we apply our results in order to determine which convex combination of the CAC 40 stocks possesses the lowest risk: not only we get a very low risk compared to the index, but we also get a return rate that is almost three times better than the one of the index.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)