Differentiation of the Wright functions with respect to parameters and other results (2009.08803v3)
Abstract: In this survey we discuss derivatives of the Wright functions (of the first and the second kind) with respect to parameters. Differentiation of these functions leads to infinite power series with coefficient being quotients of the digamma (psi) and gamma functions. Only in few cases it is possible to obtain the sums of these series in a closed form. Functional form of the power series resembles those derived for the Mittag-Leffler functions. If the Wright functions are treated as the generalized Bessel functions, differentiation operations can be expressed in terms of the Bessel functions and their derivatives with respect to the order. It is demonstrated that in many cases it is possible to derive the explicit form of the Mittag-Leffler functions by performing simple operations with the Laplace transforms of the Wright functions. The Laplace transform pairs of the both kinds of the Wright functions are discussed for particular values of the parameters. Some transform pairs serve to obtain functional limits by applying the shifted Dirac delta function.