Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical behaviour of self-similar structures in canonical wall turbulence (2009.08686v1)

Published 18 Sep 2020 in physics.flu-dyn

Abstract: Townsend's attached-eddy hypothesis (AEH) provides a theoretical description of turbulence statistics in the logarithmic region in terms of coherent motions that are self-similar with the wall-normal distance (y). Here, we show the self-similar behaviour of turbulence motions contained within wall-attached structures of streamwise velocity fluctuations using the direct numerical simulation dataset of turbulent boundary layer, channel, and pipe flows ($Re_\tau \approx 1000$) The physical sizes of the identified structures are geometrically self-similar in terms of height, and the associated turbulence intensity follows the logarithmic variation in all three flows. Moreover, the corresponding two-dimensional energy spectra are aligned along a linear relationship between the streamwise and spanwise wavelengths ($\lambda_x$ and $\lambda_z$, respectively) in the large-scale range ($12y < \lambda_x <$ 3--4$\delta$), which is reminiscent of self-similarity. Consequently, one-dimensional spectra obtained by integrating the two-dimensional spectra over the self-similar range show some evidence for self-similar scaling $\lambda_x \sim \lambda_z$ and the possible existence of $k_x{-1}$ and $k_z{-1}$ scaling regions in a similar subrange. The present results reveal that the asymptotic behaviours can be obtained by identifying the self-similar coherent structures in canonical wall turbulence, albeit in low Reynolds number flows.

Summary

We haven't generated a summary for this paper yet.