Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Per-frame mAP Prediction for Continuous Performance Monitoring of Object Detection During Deployment (2009.08650v2)

Published 18 Sep 2020 in cs.CV

Abstract: Performance monitoring of object detection is crucial for safety-critical applications such as autonomous vehicles that operate under varying and complex environmental conditions. Currently, object detectors are evaluated using summary metrics based on a single dataset that is assumed to be representative of all future deployment conditions. In practice, this assumption does not hold, and the performance fluctuates as a function of the deployment conditions. To address this issue, we propose an introspection approach to performance monitoring during deployment without the need for ground truth data. We do so by predicting when the per-frame mean average precision drops below a critical threshold using the detector's internal features. We quantitatively evaluate and demonstrate our method's ability to reduce risk by trading off making an incorrect decision by raising the alarm and absenting from detection.

Citations (4)

Summary

We haven't generated a summary for this paper yet.