Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universality Laws for High-Dimensional Learning with Random Features (2009.07669v3)

Published 16 Sep 2020 in cs.IT and math.IT

Abstract: We prove a universality theorem for learning with random features. Our result shows that, in terms of training and generalization errors, a random feature model with a nonlinear activation function is asymptotically equivalent to a surrogate linear Gaussian model with a matching covariance matrix. This settles a so-called Gaussian equivalence conjecture based on which several papers develop their results. Our method for proving the universality theorem builds on the classical Lindeberg approach. Major ingredients of the proof include a leave-one-out analysis for the optimization problem associated with the training process and a central limit theorem, obtained via Stein's method, for weakly correlated random variables.

Citations (115)

Summary

We haven't generated a summary for this paper yet.