Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust calibration of multiparameter sensors via machine learning at the single-photon level (2009.07122v1)

Published 15 Sep 2020 in quant-ph

Abstract: Calibration of sensors is a fundamental step to validate their operation. This can be a demanding task, as it relies on acquiring a detailed modelling of the device, aggravated by its possible dependence upon multiple parameters. Machine learning provides a handy solution to this issue, operating a mapping between the parameters and the device response, without needing additional specific information on its functioning. Here we demonstrate the application of a Neural Network based algorithm for the calibration of integrated photonic devices depending on two parameters. We show that a reliable characterization is achievable by carefully selecting an appropriate network training strategy. These results show the viability of this approach as an effective tool for the multiparameter calibration of sensors characterized by complex transduction functions.

Summary

We haven't generated a summary for this paper yet.