Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Referenced Training for Dialogue Response Generation (2009.07117v2)

Published 15 Sep 2020 in cs.CL

Abstract: In open-domain dialogue response generation, a dialogue context can be continued with diverse responses, and the dialogue models should capture such one-to-many relations. In this work, we first analyze the training objective of dialogue models from the view of Kullback-Leibler divergence (KLD) and show that the gap between the real world probability distribution and the single-referenced data's probability distribution prevents the model from learning the one-to-many relations efficiently. Then we explore approaches to multi-referenced training in two aspects. Data-wise, we generate diverse pseudo references from a powerful pretrained model to build multi-referenced data that provides a better approximation of the real-world distribution. Model-wise, we propose to equip variational models with an expressive prior, named linear Gaussian model (LGM). Experimental results of automated evaluation and human evaluation show that the methods yield significant improvements over baselines. We will release our code and data in https://github.com/ZHAOTING/dialog-processing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tianyu Zhao (73 papers)
  2. Tatsuya Kawahara (61 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com