Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning (2009.06399v1)

Published 10 Sep 2020 in cs.LG and cs.AI

Abstract: There is a growing concern that the recent progress made in AI, especially regarding the predictive competence of deep learning models, will be undermined by a failure to properly explain their operation and outputs. In response to this disquiet counterfactual explanations have become massively popular in eXplainable AI (XAI) due to their proposed computational psychological, and legal benefits. In contrast however, semifactuals, which are a similar way humans commonly explain their reasoning, have surprisingly received no attention. Most counterfactual methods address tabular rather than image data, partly due to the nondiscrete nature of the latter making good counterfactuals difficult to define. Additionally generating plausible looking explanations which lie on the data manifold is another issue which hampers progress. This paper advances a novel method for generating plausible counterfactuals (and semifactuals) for black box CNN classifiers doing computer vision. The present method, called PlausIble Exceptionality-based Contrastive Explanations (PIECE), modifies all exceptional features in a test image to be normal from the perspective of the counterfactual class (hence concretely defining a counterfactual). Two controlled experiments compare this method to others in the literature, showing that PIECE not only generates the most plausible counterfactuals on several measures, but also the best semifactuals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mark T. Keane (27 papers)
  2. Eoin M. Kenny (7 papers)
Citations (93)

Summary

We haven't generated a summary for this paper yet.