Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RLCFR: Minimize Counterfactual Regret by Deep Reinforcement Learning (2009.06373v1)

Published 10 Sep 2020 in cs.LG, cs.GT, and stat.ML

Abstract: Counterfactual regret minimization (CFR) is a popular method to deal with decision-making problems of two-player zero-sum games with imperfect information. Unlike existing studies that mostly explore for solving larger scale problems or accelerating solution efficiency, we propose a framework, RLCFR, which aims at improving the generalization ability of the CFR method. In the RLCFR, the game strategy is solved by the CFR in a reinforcement learning framework. And the dynamic procedure of iterative interactive strategy updating is modeled as a Markov decision process (MDP). Our method, RLCFR, then learns a policy to select the appropriate way of regret updating in the process of iteration. In addition, a stepwise reward function is formulated to learn the action policy, which is proportional to how well the iteration strategy is at each step. Extensive experimental results on various games have shown that the generalization ability of our method is significantly improved compared with existing state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.