Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Turing pattern formation in a model with active and passive transport (2009.06076v1)

Published 13 Sep 2020 in cond-mat.stat-mech and q-bio.CB

Abstract: We investigate Turing pattern formation in a stochastic and spatially discretized version of a reaction diffusion advection (RDA) equation, which was previously introduced to model synaptogenesis in \textit{C. elegans}. The model describes the interactions between a passively diffusing molecular species and an advecting species that switches between anterograde and retrograde motor-driven transport (bidirectional transport). Within the context of synaptogenesis, the diffusing molecules can be identified with the protein kinase CaMKII and the advecting molecules as glutamate receptors. The stochastic dynamics evolves according to an RDA master equation, in which advection and diffusion are both modeled as hopping reactions along a one-dimensional array of chemical compartments. Carrying out a linear noise approximation of the RDA master equation leads to an effective Langevin equation, whose power spectrum provides a means of extending the definition of a Turing instability to stochastic systems, namely, in terms of the existence of a peak in the power spectrum at a non-zero spatial frequency. We thus show how noise can significantly extend the range over which spontaneous patterns occur, which is consistent with previous studies of RD systems.

Summary

We haven't generated a summary for this paper yet.