Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Conditioned Keyframe-Based Video Summarization Using Object Detection (2009.05269v1)

Published 11 Sep 2020 in cs.CV

Abstract: Video summarization plays an important role in selecting keyframe for understanding a video. Traditionally, it aims to find the most representative and diverse contents (or frames) in a video for short summaries. Recently, query-conditioned video summarization has been introduced, which considers user queries to learn more user-oriented summaries and its preference. However, there are obstacles in text queries for user subjectivity and finding similarity between the user query and input frames. In this work, (i) Image is introduced as a query for user preference (ii) a mathematical model is proposed to minimize redundancy based on the loss function & summary variance and (iii) the similarity score between the query image and input video to obtain the summarized video. Furthermore, the Object-based Query Image (OQI) dataset has been introduced, which contains the query images. The proposed method has been validated using UT Egocentric (UTE) dataset. The proposed model successfully resolved the issues of (i) user preference, (ii) recognize important frames and selecting that keyframe in daily life videos, with different illumination conditions. The proposed method achieved 57.06% average F1-Score for UTE dataset and outperforms the existing state-of-theart by 11.01%. The process time is 7.81 times faster than actual time of video Experiments on a recently proposed UTE dataset show the efficiency of the proposed method

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Neeraj Baghel (3 papers)
  2. Suresh C. Raikwar (1 paper)
  3. Charul Bhatnagar (4 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.