Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A harmonic sum over nontrivial zeros of the Riemann zeta-function (2009.05251v1)

Published 11 Sep 2020 in math.NT

Abstract: We consider the sum $\sum 1/\gamma$, where $\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in an interval $(0,T]$, and consider the behaviour of the sum as $T \to\infty$. We show that, after subtracting a smooth approximation $\frac{1}{4\pi} \log2(T/2\pi),$ the sum tends to a limit $H \approx -0.0171594$ which can be expressed as an integral. We calculate $H$ to high accuracy, using a method which has error $O((\log T)/T2)$. Our results improve on earlier results by Hassani and other authors.

Summary

We haven't generated a summary for this paper yet.