Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second Order Optimization for Adversarial Robustness and Interpretability (2009.04923v1)

Published 10 Sep 2020 in cs.LG and stat.ML

Abstract: Deep neural networks are easily fooled by small perturbations known as adversarial attacks. Adversarial Training (AT) is a technique aimed at learning features robust to such attacks and is widely regarded as a very effective defense. However, the computational cost of such training can be prohibitive as the network size and input dimensions grow. Inspired by the relationship between robustness and curvature, we propose a novel regularizer which incorporates first and second order information via a quadratic approximation to the adversarial loss. The worst case quadratic loss is approximated via an iterative scheme. It is shown that using only a single iteration in our regularizer achieves stronger robustness than prior gradient and curvature regularization schemes, avoids gradient obfuscation, and, with additional iterations, achieves strong robustness with significantly lower training time than AT. Further, it retains the interesting facet of AT that networks learn features which are well-aligned with human perception. We demonstrate experimentally that our method produces higher quality human-interpretable features than other geometric regularization techniques. These robust features are then used to provide human-friendly explanations to model predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Theodoros Tsiligkaridis (35 papers)
  2. Jay Roberts (8 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.