Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-learning based Alternating Minimization Algorithm for Non-convex Optimization (2009.04899v7)

Published 9 Sep 2020 in cs.LG, math.OC, and stat.ML

Abstract: In this paper, we propose a novel solution for non-convex problems of multiple variables, especially for those typically solved by an alternating minimization (AM) strategy that splits the original optimization problem into a set of sub-problems corresponding to each variable, and then iteratively optimize each sub-problem using a fixed updating rule. However, due to the intrinsic non-convexity of the original optimization problem, the optimization can usually be trapped into spurious local minimum even when each sub-problem can be optimally solved at each iteration. Meanwhile, learning-based approaches, such as deep unfolding algorithms, are highly limited by the lack of labelled data and restricted explainability. To tackle these issues, we propose a meta-learning based alternating minimization (MLAM) method, which aims to minimize a partial of the global losses over iterations instead of carrying minimization on each sub-problem, and it tends to learn an adaptive strategy to replace the handcrafted counterpart resulting in advance on superior performance. Meanwhile, the proposed MLAM still maintains the original algorithmic principle, which contributes to a better interpretability. We evaluate the proposed method on two representative problems, namely, bi-linear inverse problem: matrix completion, and non-linear problem: Gaussian mixture models. The experimental results validate that our proposed approach outperforms AM-based methods in standard settings, and is able to achieve effective optimization in challenging cases while other comparing methods would typically fail.

Citations (31)

Summary

We haven't generated a summary for this paper yet.