Finite GK-Dimensional pre-Nichols algebras of super and standard type
Abstract: We prove that finite GK-dimensional pre-Nichols algebras of super and standard type are quotients of the corresponding distinguished pre-Nichols algebras, except when the braiding matrix is of type super A and the dimension of the braided vector space is three. For these two exceptions we explicitly construct substitutes as braided central extensions of the corresponding pre-Nichols algebras by a polynomial ring in one variable. Via bosonization this gives new examples of finite GK-dimensional Hopf algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.