Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vision-Based Autonomous Drone Control using Supervised Learning in Simulation (2009.04298v1)

Published 9 Sep 2020 in cs.RO, cs.AI, and cs.LG

Abstract: Limited power and computational resources, absence of high-end sensor equipment and GPS-denied environments are challenges faced by autonomous micro areal vehicles (MAVs). We address these challenges in the context of autonomous navigation and landing of MAVs in indoor environments and propose a vision-based control approach using Supervised Learning. To achieve this, we collected data samples in a simulation environment which were labelled according to the optimal control command determined by a path planning algorithm. Based on these data samples, we trained a Convolutional Neural Network (CNN) that maps low resolution image and sensor input to high-level control commands. We have observed promising results in both obstructed and non-obstructed simulation environments, showing that our model is capable of successfully navigating a MAV towards a landing platform. Our approach requires shorter training times than similar Reinforcement Learning approaches and can potentially overcome the limitations of manual data collection faced by comparable Supervised Learning approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.