2000 character limit reached
On the existence of multiple solutions for fractional Brezis Nirenberg type equations (2009.03064v1)
Published 7 Sep 2020 in math.AP
Abstract: The present paper studies the non-local fractional analogue of the famous paper of Brezis and Nirenberg in [4]. Namely, we focus on the following model, $$\begin{align*}\left(\mathcal{P}\right) \begin{cases} \left(-\Delta\right)s u-\lambda u &= \alpha |u|{p-2}u + \beta|u|{2*-2}u \quad\mbox{in}\quad \Omega,\ u&=0\quad\mbox{in}\quad\mathbb{R}N\setminus\Omega, \end{cases} \end{align*}$$ where $(-\Delta)s$ is the fractional Laplace operator, $s \in (0,1)$, with $N \geq 3s$, $2<p\<2^*$, $\beta\>0, \lambda, \alpha \in \mathbb{R}$ and establish the existence of nontrivial solutions and sign-changing solutions for the problem $(\mathcal{P})$.