Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TransModality: An End2End Fusion Method with Transformer for Multimodal Sentiment Analysis (2009.02902v2)

Published 7 Sep 2020 in cs.CL

Abstract: Multimodal sentiment analysis is an important research area that predicts speaker's sentiment tendency through features extracted from textual, visual and acoustic modalities. The central challenge is the fusion method of the multimodal information. A variety of fusion methods have been proposed, but few of them adopt end-to-end translation models to mine the subtle correlation between modalities. Enlightened by recent success of Transformer in the area of machine translation, we propose a new fusion method, TransModality, to address the task of multimodal sentiment analysis. We assume that translation between modalities contributes to a better joint representation of speaker's utterance. With Transformer, the learned features embody the information both from the source modality and the target modality. We validate our model on multiple multimodal datasets: CMU-MOSI, MELD, IEMOCAP. The experiments show that our proposed method achieves the state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zilong Wang (99 papers)
  2. Zhaohong Wan (2 papers)
  3. Xiaojun Wan (99 papers)
Citations (110)