Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Power Electronic Converter Modeling for Low Inertia Power System Dynamic Studies (2009.02621v1)

Published 6 Sep 2020 in eess.SY and cs.SY

Abstract: A significant amount of converter-based generation is being integrated into the bulk electric power grid to fulfill the future electric demand through renewable energy sources, such as wind and photovoltaic. The dynamics of converter systems in the overall stability of the power system can no longer be neglected as in the past. Numerous efforts have been made in the literature to derive detailed dynamic models, but using detailed models becomes complicated and computationally prohibitive in large system level studies. In this paper, we use a data-driven, black-box approach to model the dynamics of a power electronic converter. System identification tools are used to identify the dynamic models, while a power amplifier controlled by a real-time digital simulator is used to perturb and control the converter. A set of linear dynamic models for the converter are derived, which can be employed for system level studies of converter-dominated electric grids.

Citations (13)

Summary

We haven't generated a summary for this paper yet.