Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Respect for Human Autonomy in Recommender Systems (2009.02603v1)

Published 5 Sep 2020 in cs.CY

Abstract: Recommender systems can influence human behavior in significant ways, in some cases making people more machine-like. In this sense, recommender systems may be deleterious to notions of human autonomy. Many ethical systems point to respect for human autonomy as a key principle arising from human rights considerations, and several emerging frameworks for AI include this principle. Yet, no specific formalization has been defined. Separately, self-determination theory shows that autonomy is an innate psychological need for people, and moreover has a significant body of experimental work that formalizes and measures level of human autonomy. In this position paper, we argue that there is a need to specifically operationalize respect for human autonomy in the context of recommender systems. Moreover, that such an operational definition can be developed based on well-established approaches from experimental psychology, which can then be used to design future recommender systems that respect human autonomy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Lav R. Varshney (126 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.