Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Galois groups of p-extensions of higher local fields (2009.02501v2)

Published 5 Sep 2020 in math.NT

Abstract: Suppose $\mathcal K$ is $N$-dimensional local field of characteristic $p$, $\mathcal G =\mathop{Gal}(\mathcal K_{sep}/\mathcal K)$, $\mathcal G_{<p}$ is the maximal quotient of $\mathcal G$ of period $p$ and nilpotent class $<p$ and $\mathcal K_{<p}\subset \mathcal K_{sep}$ is such that $\mathop{Gal}(\mathcal K_{<p}/\mathcal K)=\mathcal G_{<p}$. We use nilpotent Artin-Schreier theory to identify $\mathcal G_{<p}$ with the group $G(\mathcal L)$ obtained from a profinite Lie $\mathbb F_p$-algebra $\mathcal L$ via the Campbell-Hausdorff composition law. The canonical $\mathcal P$-topology on $\mathcal K$ is used to define a dense Lie subalgebra $\mathcal L{\mathcal P}$ in $\mathcal L$. The algebra $\mathcal L{\mathcal P}$ can be provided with a system of $\mathcal P$-topological generators and its $\mathcal P$-open subalgebras correspond to all $N$-dimensional extensions of $\mathcal K$ in $\mathcal K_{<p}$. These results are applied to higher local fields $K$ of characteristic 0 containing primitive $p$-th root of unity. If $\Gamma =\mathop{Gal}(K_{alg}/K)$ we introduce similarly the quotient $\Gamma_{<p}=G(L)$, a dense $\mathbb F_p$-Lie algebra $L{\mathcal P}\subset L$, and describe the structure of $L{\mathcal P}$ in terms of generators and relations. The general result is illustrated by explicit presentation of $\Gamma_{<p}$ modulo third commutators.

Summary

We haven't generated a summary for this paper yet.