Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Deep Learning for the Identification and Reconstruction of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations (2009.02296v6)

Published 4 Sep 2020 in cs.LG and stat.ML

Abstract: The data-driven recovery of the unknown governing equations of dynamical systems has recently received an increasing interest. However, the identification of governing equations remains challenging when dealing with noisy and partial observations. Here, we address this challenge and investigate variational deep learning schemes. Within the proposed framework, we jointly learn an inference model to reconstruct the true states of the system and the governing laws of these states from series of noisy and partial data. In doing so, this framework bridges classical data assimilation and state-of-the-art machine learning techniques. We also demonstrate that it generalises state-of-the-art methods. Importantly, both the inference model and the governing model embed stochastic components to account for stochastic variabilities, model errors, and reconstruction uncertainties. Various experiments on chaotic and stochastic dynamical systems support the relevance of our scheme w.r.t. state-of-the-art approaches.

Citations (13)

Summary

We haven't generated a summary for this paper yet.