Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RecSal : Deep Recursive Supervision for Visual Saliency Prediction (2008.13745v1)

Published 31 Aug 2020 in cs.CV and cs.LG

Abstract: State-of-the-art saliency prediction methods develop upon model architectures or loss functions; while training to generate one target saliency map. However, publicly available saliency prediction datasets can be utilized to create more information for each stimulus than just a final aggregate saliency map. This information when utilized in a biologically inspired fashion can contribute in better prediction performance without the use of models with huge number of parameters. In this light, we propose to extract and use the statistics of (a) region specific saliency and (b) temporal order of fixations, to provide additional context to our network. We show that extra supervision using spatially or temporally sequenced fixations results in achieving better performance in saliency prediction. Further, we also design novel architectures for utilizing this extra information and show that it achieves superior performance over a base model which is devoid of extra supervision. We show that our best method outperforms previous state-of-the-art methods with 50-80% fewer parameters. We also show that our models perform consistently well across all evaluation metrics unlike prior methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sandeep Mishra (20 papers)
  2. Oindrila Saha (13 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.