Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiway $p$-spectral graph cuts on Grassmann manifolds (2008.13210v2)

Published 30 Aug 2020 in cs.LG and stat.ML

Abstract: Nonlinear reformulations of the spectral clustering method have gained a lot of recent attention due to their increased numerical benefits and their solid mathematical background. We present a novel direct multiway spectral clustering algorithm in the $p$-norm, for $p \in (1, 2]$. The problem of computing multiple eigenvectors of the graph $p$-Laplacian, a nonlinear generalization of the standard graph Laplacian, is recasted as an unconstrained minimization problem on a Grassmann manifold. The value of $p$ is reduced in a pseudocontinuous manner, promoting sparser solution vectors that correspond to optimal graph cuts as $p$ approaches one. Monitoring the monotonic decrease of the balanced graph cuts guarantees that we obtain the best available solution from the $p$-levels considered. We demonstrate the effectiveness and accuracy of our algorithm in various artificial test-cases. Our numerical examples and comparative results with various state-of-the-art clustering methods indicate that the proposed method obtains high quality clusters both in terms of balanced graph cut metrics and in terms of the accuracy of the labelling assignment. Furthermore, we conduct studies for the classification of facial images and handwritten characters to demonstrate the applicability in real-world datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.