Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian High-dimensional Semi-parametric Inference beyond sub-Gaussian Errors (2008.13174v1)

Published 30 Aug 2020 in math.ST and stat.TH

Abstract: We consider a sparse linear regression model with unknown symmetric error under the high-dimensional setting. The true error distribution is assumed to belong to the locally $\beta$-H\"{o}lder class with an exponentially decreasing tail, which does not need to be sub-Gaussian. We obtain posterior convergence rates of the regression coefficient and the error density, which are nearly optimal and adaptive to the unknown sparsity level. Furthermore, we derive the semi-parametric Bernstein-von Mises (BvM) theorem to characterize asymptotic shape of the marginal posterior for regression coefficients. Under the sub-Gaussianity assumption on the true score function, strong model selection consistency for regression coefficients are also obtained, which eventually asserts the frequentist's validity of credible sets.

Summary

We haven't generated a summary for this paper yet.