Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

agtboost: Adaptive and Automatic Gradient Tree Boosting Computations (2008.12625v1)

Published 28 Aug 2020 in stat.ML, cs.LG, stat.AP, and stat.CO

Abstract: agtboost is an R package implementing fast gradient tree boosting computations in a manner similar to other established frameworks such as xgboost and LightGBM, but with significant decreases in computation time and required mathematical and technical knowledge. The package automatically takes care of split/no-split decisions and selects the number of trees in the gradient tree boosting ensemble, i.e., agtboost adapts the complexity of the ensemble automatically to the information in the data. All of this is done during a single training run, which is made possible by utilizing developments in information theory for tree algorithms {\tt arXiv:2008.05926v1 [stat.ME]}. agtboost also comes with a feature importance function that eliminates the common practice of inserting noise features. Further, a useful model validation function performs the Kolmogorov-Smirnov test on the learned distribution.

Summary

We haven't generated a summary for this paper yet.