Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jacobi--Trudi formulas for flagged refined dual stable Grothendieck polynomials (2008.12000v2)

Published 27 Aug 2020 in math.CO

Abstract: Recently Galashin, Grinberg, and Liu introduced the refined dual stable Grothendieck polynomials, which are symmetric functions in $x=(x_1,x_2,\dots)$ with additional parameters $t=(t_1,t_2,\dots)$. The refined dual stable Grothendieck polynomials are defined as a generating function for reverse plane partitions of a given shape. They interpolate between Schur functions and dual stable Grothendieck polynomials introduced by Lam and Pylyavskyy in 2007. Flagged refined dual stable Grothendieck polynomials are a more refined version of refined dual stable Grothendieck polynomials, where lower and upper bounds are given for the entries of each row or column. In this paper Jacobi--Trudi-type formulas for flagged refined dual stable Grothendieck polynomials are proved using plethystic substitution. This resolves a conjecture of Grinberg and generalizes a result by Iwao and Amanov--Yeliussizov.

Summary

We haven't generated a summary for this paper yet.