Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auxiliary Network: Scalable and agile online learning for dynamic system with inconsistently available inputs (2008.11828v1)

Published 26 Aug 2020 in cs.LG and stat.ML

Abstract: Streaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios demand is some input features are reliable while others are unreliable or inconsistent. In this paper, we propose a novel deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile. It employs a weighted ensemble of classifiers to give a final outcome. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network model for a dynamic complex environment requiring ad hoc or inconsistent input data. The efficacy of Aux-Net is shown on public dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.