Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the power of Chatterjee rank correlation (2008.11619v4)

Published 26 Aug 2020 in math.ST and stat.TH

Abstract: Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much recent attention. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjee's new correlation coefficient to three established rank correlations that also facilitate consistent tests of independence, namely, Hoeffding's $D$, Blum-Kiefer-Rosenblatt's $R$, and Bergsma-Dassios-Yanagimoto's $\tau*$. We contrast their computational efficiency in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjee's coefficient is unfortunately rate sub-optimal compared to $D$, $R$, and $\tau*$. The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favor $D$, $R$, and $\tau*$ over Chatterjee's new correlation coefficient for the purpose of testing independence.

Summary

We haven't generated a summary for this paper yet.